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A Subgridding Method for the
Time-Domain Finite-Difference Method to
Solve Maxwell’s Equations

Svetlana S. Zivanovic, Kane S. Yee, Member, IEEE, and Kenneth K. Mei, Fellow, IEEE

Abstract —The time-domain finite-difference method (TDFDM) gives
accurate results for the calculation of electromagnetic wave propagation
but uses a large amount of computer memory. This paper investigates a
modification to this technique that employs a variable step size. The
entire computational volume is divided into a coarse grid with a large
step size; a fine grid with a small step size is introduced only around
discontinuities. The corresponding time increments will be related to the
spatial increments with the same ratio in order to minimize the numeri-
cal dispersion. The fields within both the coarse and fine grids are found
using the TDFDM while an interpolation in both space and time is
utilized to calculate the tangential electric field on the coarse—fine grid
boundary. This subgridding decreases the required computer memory
and therefore expands the capability of the TDFDM. The technique is
shown to be numerically stable, and does not entajl any extra numerical
error. Finally, the method is applied to the calculation of waveguides
and microstrips.

I. INTRODUCTION

N order for a numerical computation to yield accurate

results the variables that are calculated should not change
significantly over the linecar dimension of the numerical grid.
Therefore the spatial increment, Ax, used in the time-
domain finite-difference method (TDFDM) [1], is taken to
be much smailer than the scattering objects. Special tech-
niques must be introduced to handle objects that are compa-
rable to or smaller than Ax. In 1981 Holland and Simpson
[2] introduced the thin-wire, thin-slot algorithm to locally
modify the TDFDM. Recently, thin-wire thin gaps have been
modeled with the TDFDM through the integral form of
Faraday’s law [3]-[5]. In all these formulations, the local
field behavior is inferred from static problems. This means
that in one linear dimension the thin wires or thin slots are
several spatial increments long. These techniques have ques-
tionable applicability in some problems with high-power mi-
crowaves where accurate coupling calculations through small
irregular holes, grooves, or slots are required. In these cases,
smaller spatial increments must be used. Numerical stability
then requires that the time increment also be comparably
decreased. The problem becomes, at best, intolerably expen-
sive to run if one uses a uniform time increment and, at

Manuscript received May 1, 1990; revised November 5, 1990. This
work was supported by the Air Force Office of Scientific Research
under Grant F19628-88-K-0025, by MICRO industrial sponsor Hughes
Aircraft Company, and by the California State MICRO Program.

S. S. Zivanovic and K. K. Mei are with the Department of Electrical
Engineering and Computer Sciences, University of California at Berke-
ley, Berkeley, CA 94720.

K. S. Yee is with the Lockheed Missile and Space Company, Palo
Alto, CA 94304.

IEEE Log Number 9042343,

0 b 0 X e P Q P 0
* Er &+ TO T+ & *
®o o0 3o ¢ %0 T ®
0 * 0
@0 30 30 yeiedo @
®@o 0 20 303040 (P
0 o T )
[ 0 o0 030 o0 (b

rm i . .
@0 oo ta oo @

0 x* g —¥ 0
@olotododoqo @

* BT OO TS -

0 0 0 3 0 0

Electric field points
Magnetic field points

Electric field values obtained by spatial
and time interpolations

e [Initial values for the magnetic field obtained
by spatial and time average of
the four neighbors
Fig. 1. Positions where the field quantities are calculated.
worst, impossible to run because of the memory require-
ments arising from the large number of grid points.

In 1981, Kunz and Simpson [6] introduced an expansion
technique in conjunction with the TDFDM to model small
local objects and demonstrated its applicability to several
problems. This method requires first a calculation in a vol-
ume with a coarse grid. Spatial and time interpolations of
the results from this first calculation are then used to obtain
the tangential electric field components on the boundary of
the subgridded volume, which are in turn used to make a
second run on the subgridded volume.

The scheme investigated in this paper, the variable step
size method (VSSM), also empioys a variable step size. This
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spatial increment is kept small around discontinuities and
increased further out. Spatial and time interpolations are
used to obtain the tangential electric field on the boundary
between the coarse and fine grids. But instead of making two
separate calculations, the calculations in the coarse grid are
coupled with those in the fine grid through the use of
Maxwell’s equations. The close interrelations of the coarse
grid and fine grid calculations will yield a more accurate
modeling of the fine features within the subvolume of the
coarse grid.

Fig. 1 shows a cross section of the calculational volume
illustrating the positions of the tangential electric field com-
ponents and normal magnetic field components. Since the
spatial increment in vol. 2, the fine grid, is only half that of
vol. 1, the coarse grid, the time increment for vol. 2 calcula-
tions, At,, is equal to half of A¢,, the time increment for vol.
1 calculations. This choice of spatial and time increments in
the two different regions should minimize the numerical
dispersion caused by the change of step size.

The fields are calculated using the TDFDM, the set of
discretized Maxwell’s equations:

HI2(i,j, k) = H}7'2(i, , k)
At [E;’(i,j,k)— EZi,j—1,k)
M Ay

Az

Hp* 2, k) = Hy=V/2(i, ), k)

At | EXNi,j,k)— EXNi,j, k—1)
_7 Az
- Ax }

HI V2,5, k) = HP V(i j, k)

At | EJ(i,j,k)—E}(i—1,j,k)

u Ax

E;’(l,],k) - E.r’cl(l7]_1ak) ]
Ay

E}(iyj k) = EN(iy), k)
LA HP V200, +1,k) ~ HE V2 (i, ), k)
Ay
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Fig. 2. (a) Two parallel plates with step discontinuity. (b) The trans-
mission line circuit with a shunt capacitor.

E;*(i, ), k) = EZ (i, ), k)

12 . . 12 . .
+é£ HP P V2(i4+1,4,k) = HPPV2(i,4,k)
€ Ax

H'Y2(0,j+1,k)— HPYY2(6,,k)
Ay

where the subscript # signifies that the quantities are to be
evaluated at f,=nAf, and i,j, k represent the point
(iAx,jAy,kAz) in the grid.

In the “interiors” of vol. 1 and vol. 2, (Fig. 1) the first
three TDFDM equations are used to advance the electric
field at positions marked by X and the last three to advance
the magnetic field at positions marked by o. The electric
field at points marked by X, located on the boundary of the
fine grid, are obtained through the spatial and time interpo-
lations of the electric field at points marked by X. At the
beginning of each Ar the magnetic field at points marked by
* js replaced by the space and time average of its four
neighbors, calculated at the same time, in the fine grid. The
tangential electric fields at the boundaries of the coarse grid
are determined from the boundary conditions of the specific
structure.

II. ResuLts FrRoM SoME SiMPLE CALCULATIONS
Example 1: Two Parallel Plates with a Step Discontinuity

Fig. 2(a) shows two perfectly conducting parallel plates
with a step discontinuity; Fig. 2(b) illustrates the circuit
representation of Fig. 2(a), two transmission lines with an
excessive fringing capacitor at the junction. The subgridded
volume is over two wavelengths long, and the separation of
the plates is such that only the TEM wave can propagate.
For times greater than ¢ =0, a time-harmonic TEM wave is
incident from the left. The TDFDM using both the uniform
fine and uniform coarse grids and the VSSM are used to
calculate the solution from time zero to an approximate
steady state. The equivalent capacitance, C, shown in Fig.
2(b) is then calculated from the amplitude and phase of the
reflected wave at a point far from the discontinuity.

Table I shows the capacitance obtained using the VSSM
(column 1), the TDFDM with a uniform coarse grid (column
2), and the uniform fine grid (column 3). Column 4 is based
on a quasi-static formula [7]. Except for very large step
discontinuities, the VSSM improved on the accuracy of the
TDFDM with a uniform coarse grid.



ZIVANOVIC et al.: A SUBGRIDDING METHOD

473

TABLE 1
SuUNT CapaciTANCE C X 10'2 F/m FOR THE PARALLEL PLATES SHOWN IN
‘ Fic. 2(a) anp (b) (h_=1cm)

' Static
Uniform Uniform Approxi-
‘hy/h_ With Subgrid Coarse Grid Fine Grid mation
0.250 5.10 5.20 522 5.75
0.375 3.60 3.67 3.63 3.62
0.50 2.27 2.31 2.29 2.21
0.625 127 1.30 127 1.24
0.75 0.566 - 0.590 0.570 0.573
.20 +
10 +
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Fig. 3. A TE,, sinusoidal mode incident from the left (with a di- ® Time nanoseconds
aphragm). 9
w .20
/ 3
Example 2: A Uniform Rectangular Waveguide with a 5 0t
Diaphragm e
L ]
Fig. 3 illustrates a uniform waveguide with a diaphragm. A “:’ 0.0 + \/\ N\l
step harmonic TE,, mode of unit amplitude is incident from '
the left and the dimensions of the waveguide are such that - -0} : ®)
only the TE,; mode can propagate. The problem is calcu- : u h
lated to approximately steady state with both the VSSM and
the TDFDM with a uniform coarse grid. The reflected =20 1
electric fields obtained from the TDFDM and the VSSM are ,
shown in, respectively, parts (a) and (b) of Fig. 4. The -.30
reflection coefficients are similar but there is a phase shift

between the two solutions. The VSSM may have approxi-

mated the transient solution at the discontinuity better than -

the coarse grid.

The above examples demonstrate that subgridding does
not introduce any extra numerical reflection. However, the
subgridding by a factor of 2 only slightly improves the result
obtained from the uniform coarse grid. By decreasing the
spatial increment in the fine grid, the accuracy can be
improved. In the next chapter, the spatial increment of the
fine grid will be reduced to one third the spatial increment of
the coarse grid in order to improve the results obtained using
the TDFDM with a uniform coarse grid.

III. SUBGRIDDING USING SUBDIVISION BY A FACTOR
OF3

By decreasing the spatial increment of the fine grid, the
accuracy of the technique is improved at the expense of a
minimal increase in the necessary computer memory. But
this increase still remains well below the memory required by
the application of the TDFDM to a uniform fine grid. The
tangential electric fields on the fine grid boundary are no

10 20 3.0 4.0
Time nanoseconds

.0

Fig. 4. Reflected electric field due to a diaphragm: (a) uniform coarse
grid; (b) coarse—fine grid.

longer obtained from an average of the surrounding field
points. Instead, they are calculated using a second-order
equation, the homogeneous traveling wave equation:

1 o’E

c2 9%t

2

where c,, is the velocity of light in the medium:

This wave equation can be approximated by a second-order
finite-difference wave equation (SOFDE) for each field com-
ponent, and it is used to solve for the tangential electric field
at the fine grid boundaries. As before, n indicates the time
increment; i, j, k represent the spatial position; Ax, Ay, and
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Az are the spatial increments of the coarse grid; and Af is
the time increment of the coarse grid:

En+l(i,j,k)
=2E"(i,j, k) — E""'(i,j k) + c2Ar?
E"(i+1,j,k)=2E"(i,j,k)+ E"i—1,j,k)

Ax?
E"(i,j+1,k)—-2E"(i,j,k)+ E"(i,j—1,k)
+ 2
Ay
E"(i,j,k +1) —2E”(i,j,k)+ E”(i,j,k -1)
+ A2 .

Some of the terms in the SOFDE involve fields evaluated
at points external to the fine grid. Quadratic interpolation in
space of the coarse grid gives a very good approximation to
these field values, since the wave equation is an equation of
second order. This is illustrated in Fig. 5. The fields in region
2 at points that are not located on the coarse grid (points 2,
3,5,6,7,8,9,10, 11, 12, 14, and 15 in the enlargement) are
obtained by a quadratic interpolation of the fields at the
surrounding coarse grid points. For example, the field at
point 6 in the enlargement jn Fig. 5 is given by (E,, referring
to the electric field at point n in the enlargement)

flax Ay frAx?  frAy?  frAxAy
Eg=E, ~ L +f I
3 3 18 18 9
where
_E{-E,
==
2Ax
fim Ep—E3
7 2Ay
E,+E,—2E,
e
E1"+E13_2E1
y = AyZ
v Ep+ Eyy— Epn~Ey
*y 4Ax Ay

(The point 1" is located above 1' and diagonally from 1.)

The fields in region 3 (fine grid) are found using the
TDFDM. The tangential electric field in region 1 is calcu-
lated from the second-order finite-difference wave equation,
discussed earlier, using the corresponding tangential field
values in regions 2 and 3. The normal magnetic field in
region 1 is calculated using the TDFDM.

So, for every time step TDFD calculation done on the
coarse grid, three calculations are done on the fine grid since
the time step in the fine grid is also decreased by a factor of
3. By decreasing the fine grid step size the accuracy of the
TDFDM applied to the coarse grid is improved at the
expense of a minimal increase in the necessary computer
memory. But this increase still remains well below the mem-
ory required by a direct application of the TDFDM. The
actual amount of memory saved is, of course, dependent on
the size of the discontinuities.
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Fig. 5. Configuration used to calculate the fields in the fine mesh.
Region 1 (thick line): the fine mesh boundary.
Region 2 (shaded region, area outside region 1): coarse mesh region
that borders the fine mesh region and is Ax wide, where Ax is the
coarse mesh spatial increment.
Region 3 (checkered region, inside region 1): fine mesh region
excluding the boundary.

A. Stability Tests of the VSSM

If the TDFDM is to have stable solutions, the time step,
At, must satisfy the Courant stability condition [10]:

1
1 1 1
+—
Ax?  Ay?  Az?

In our case, Ax = Ay = Az and the above equation reduces
to

At =

Ax
c Al = —.

V3

In all the calculations At and Ax were chosen to satisfy the
above inequality. Since the VSSM involves different step
sizes, extra numerical errors may result at the fine—coarse
grid boundaries, and there is a possibility that the method
could become numerically unstable after a finite number of
time steps. So, to test the inherent stability of the technique,
the VSSM was first used to solve for the fields in a rectangu-
lar waveguide. The waveguide was chosen because the fields
can be determined analytically to any necessary accuracy, so
an excellent measure of the stability and the accuracy of the
technique can be obtained.

The whole waveguide was divided into a coarse grid. On
the front plane the excitation equal to the exact analytic
solution was applied, and the tangential electric field was set
to zero on the other side surfaces.

Near the center of the waveguide, a region was further
divided into a fine grid. The waveguide and grid structure
used are shown in Fig. 6. The fine grid was kept small, so it
was not expected that the introduction of the fine grid and
consequent application of the VSSM would necessarily im-
prove the solution in this area; instead they would just test
the coarse—fine-coarse grid transitions for numerical stabil-
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Fig. 6. Mesh structure used for stability analysis. The excitation was
applied to the entire front page of the wave guide. The four sides are
metal and the back face was left open. The coarse mesh used in the
calculations covered the entire struciure and had the dimensions n1Ax
X n2Ay X n3Az. The fine mesh began at the point (mx,my,mz) and
had the dimensions m1Ax X m2Ay X m3Az.

ity. The method was applied to a one-, a two-, and then a
three-dimensional waveguide and for each case the relative

errors for both the fine and coarse grids were calculated. To

demonstrate numerical stability, these errors should con-
verge, after a few time steps, to some low minimum error.
Also, the relative fine grid error should be at least compara-
ble to the coarse grid error.

The relative error over the fine grid region and the relative
error at coarse grid points that coincided with fine grid
points were computed for each time cycle of the excitation
sine wave. The computational errors were defmed as:

1) The amplitude error, E:

E —E.!
%100
E |

4

|
E, Ei
|
where E, is the amplitude of the exact solution for the fields
and E, is the maximum value of the calculated field over
that cycle. E, was computed for all the points in the fine
grid and was then averaged.
2) The phase error, E,, defined as the normalized time
interval between the zero crossmgs of the calculated and the
exact solutions:

At()

E .
T

14

LN

]
EXZTI‘
Mt

where At is the diliirence between the time when the exact
field equals zero and when the calculated field equals zero,
and T is the time period. When required, these zero cross-
ings were determined by linear interpolation. E, was com-
puted for all the points in the fine grid and was then
averaged.

Stability testing of the one-dimensional problem involved
an excitation of sin wt? applied at the point z =0 (see fig. 6)
with propagation only in the z direction and the only existing
field components being E, and H,. The total computational

~domain was 100 space steps long. At z = 50A z, four coarse

grid space increments were divided into a fine grid and the
fields in this region were calculated using the VSSM. After
only two cycles, the relative error of the field calculation
within both the coarse and the fine grid converged and
steadily remained lower than 0.1%.
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The problem of lowest order propagation. along a two-
dimensional waveguide is equivalent to the TE;, mode of
three-dimensional waveguides, since this mode has no varia-

- tion in the y direction. The excitation on the front face

(z =0), with the coordinate system (xz) defined in Fig. 6,
was :

E, =sin{wt)cos(k, x)
where
f ‘ 2
* (n1-1)Ax

(see Fig. 6). H, and H, are the only two existing components

of the magnetic field. Using the notation in Fig. 6, the
waveguide used in the problem had n1=50 and n3=175

(n2 =0, since this is.a two-dimensional problem). The calcu-

lation was performed for two different size fine grids: m1 =3,

m2 =73 and ml=6, m2 =3 and for three different frequen-

cies, fi, f>, and f3, given by
c

Fv=308x
_ C
f2=358%
_ C
3= T5a%

where ¢ is the speed of light in a vacuum (the spatial
increment was arbitrary).

E, in both the fine and the coarse grid converged to errors
less than 1.5% while E,, for all the cases, converged to
values less than 0.02 rad. The relative error at the other
frequencies and for the other components yielded similar
results. In general, this final error (for the fine grid) de- -
creased as the frequency was decreased from f; to f, and
finally to f, or as the size of the fine grid region was
increased.

Finally, the VSSM was applied to a three-dimensional
waveguide, so all six field components were present. The
excitation on the front plane was equal to a linear combina-
tion of the TE,, and TM,; modes: '

Ex(z=0)=,(ky~

.k,
K2, ) sm(wt)sm(k x)cos(k,y)

kyk,
Ey(z=0)=(— o= k2 )sm(wt)cos(k x)sm(kyy)

where
| (o T Fig. 6)
= Tal=T)Ax (see Fig.
27
k,=————
(n2-1)Ay

ki, =kZ+k?2

c
The dimensions of the waveguide for this calculation,
using the notation in Fig. 6, were nl =50, n2 =150, and

n3 =75, The computations were performed for two different
fine grids: ml=3, m2=3, m3=3 and ml=6, m2=06,
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Fig. 7. (a) Comparison of the amplitude error for E, of a three-dimen-
sional waveguide, using a fine mesh of dimensions 3Ax X3Ay X3Az
(1. TDFDM calculation, 2. VSSM calculation) and dimensions 6A x X
6Ay X2Az (3. TDFDM calculation, 4. VSSM calculation). (b) Compari-
son of the phase error for E, of a three-dimensional waveguide, using a
fine mesh of dimensions 3Ax X3Ay X3Az (1. TDFDM calculation, 2.
VSSM calculation) and dimensions 6Ax X6Ay X2Az (3. TDFDM cal-
culation, 4. VSSM calculation).

m3 =2, as well as for the three different frequencies, f;, f,
and f;, defined previously. -

The relative errors of the calculated E, for f, are shown
in Fig. 7(a) for the amplitude error and in Fig. 7(b) for the
phase error. The errors at the other frequencies tested and
for the other field components exhibited similar behaviors.
In general, as the frequency was increased from f; to f, and
then to f3, the final error increased and at each frequency,
as the dimensions of the fine grid region were increased, the
final error decreased. All the errors converged to some finite
value that was slightly larger than the final error for the
corresponding two-dimensional case.

Although the purpose of the above calculations was to test
the stability of the method one comment can still be made
about the potential accuracy of the technique. If the domain
of the fine grid is small, as was the case here, the errors due

to the application of the second-order difference equation
dominate over any improvement that may result from the
introduction of the smaller step size; hence the results are
actually worse than the coarse grid calculations. But, as the
domain of the fine grid is increased, the effect of these
second-order errors should decrease and the fine grid results
then approach and finally exceed the accuracy of the coarse
grid. The results obtained in this section did show an im-
provement as the domain of the fine grid was increased, so

‘the VSSM, if used properly, can improve the accuracy of the

coarse grid alone.

B. Application of the VSSM to a Nondiscontinuous Microstrip

In this subsection the VSSM is used to calculate the
effective dielectric constant of several different microstrips.
The results are then compared with the calculations using
the TDFDM as well as with other, completely different and
independent techniques [11].

The effective dielectric constant, e, is often a required
parameter that has to be calculated. It is a function of the
applied frequency as well as of the width to height ratio and
the dielectric constant, €,, of the structure. Its frequency
dependence can be determined using the time dependence
of the electric field at two points in the microstrip separated
by a distance L in the direction of propagation.

Starting from

E(w,z+ L)
- Ef,2)

e vk

where E(w) is the Fourier transform of the time-domain
electric field, E(¢), (the electric field calculated using the
VSSM), and v is the propagation constant:

_ w
B_C\/Q?

y=a+jB,

one can determine e g:

1) Description of the Structure: The first microstrip used in
the calculations, along with the grid configuration and defini-
tion of symbols, is shown in Fig. 8. Because of the symmetry
of the structure, the problem is solved for only one half of
the microstrip, thereby reducing the necessary computer
time by a factor of 2. The whole computation region is
divided into a coarse grid of dimensions 11X21X55Az3,
where in each case the coarse grid space step is equal to one
fourth the height of the microstrip (1). The fine grid region
extends the full length of the upper metal strip in the z
direction, from the ground plane to about one coarse grid
space step above the metal strip in the x direction, and from
the center plane to several strip widths (w) out in the y
direction. Typical dimensions of the fine grid region were
6 X 9x54Az3, The boundary conditions used are the same as
those in [8].

2) Electric Field Calculations: The electric field calculated
using the VSSM was in very close overall agreement with the
corresponding TDFDM results; the small high-frequency os-
cillations were somewhat different from the TDFDM com-
putations, and even though the amplitude of these ripples
was smaller than the main peak by a factor of 75, this
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Fig. 8. Mesh structure used in the effective dielectric constant calcula-
tions. The excitation is applied to the front face (plane 1234) in the
region directly below the upper metal strip. Only half the microstrip is
shown here; the structure is symmetric with respect to the symmetry
plane (plane 145). The upper metal strip extends the full length of the
structure in the z direction. The ground plane (plane 127) extends the
full length of the structure in both the y and z directions. The region
between x =0 and x =4 is filled with a dielectric. The dimensions of
the coarse mesh used in these calculations are nlAx X n2Ay X n3Az.
The dimensions of the fine mesh are mlAx X m2Ay X m3Az.

TDFDM calculations:
using a coarse mesh

0.5 1 using a fine mesh
VSSM calculations: \
0.4 fine mesh dimensions are’

— — —— 6Ax X 6Ay x 54Az
- 64x x 94y x 54Az

0.0

T 1
0.0 50.0 100.0 150.0 200.0 250.0

Time (normalized by At)

Fig. 9. Comparison of the electric field calculations obtained using the
TDFDM with a coarse mesh, fine mesh and VSSM calculations using
two different fine meshes.

difference was the main contributor to the discrepancies in
the calculated effective dielectric constant. The VSSM was
run for several different dimensions of fine grids. The calcu-
lations for E, at z =22Az for two different dimensions of
fine grids, (6 X6X54A2> and 6 X9xX 54Az%) is shown in Fig.
9, along with the results using the fine grid only and the
coarse grid only.

Calculations were also done for a fine grid of 9 X6 X 54A z3,
but the improvement to the 6 X 6 X 54A z3 size fine grid is too
small to illustrate graphically; hence this result is omitted
from Fig. 9. Above the metal strip there are only evanescent
waves, which are less sensitive to errors in the boundary
conditions. It is obvious that increasing the size of the fine
grid in the x direction would not result in an appreciable
improvement of the -electric field. On the other hand, an
increase in the y dimension of the fine grid did result in
more accurate results for the fields, since there is propaga-
tion in this direction.
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7 T T T
0 5 10 15

Frequency (GHz)

Fig. 10. Comparison of the calculated e.; of the microstrip as com-
puted by various authors, with w /h = 0.96, h = 3.17 mm, and ¢, = 11.7.
Parameters are as listed above unless otherwise noted.

1) Farrar and Adams

2) Ttoh and Mittra

3) Van de Capelle and Luypaert

4) Delinger

5) Schmitt and Sarges (e, =11.2)

6) Chang and Kuester

7) Pregla and Kowalski

8) Zhang, time-domain finite-difference method (w /H =1.0)

9) Variable step size time-domain finite-difference method (w /4
=1.0)

1)-7) are taken from [8], a survey article comparing the various tech-
niques; 8) is from [7]; 9) is the present work.

3) Calculation of the Effective Dielectric Constant of Several
Microstrips: The VSSM was next applied to three different
microstrips and the results are summarized below. In each
case the dimensions of the coarse grid (from the notation in
Fig. 8) was nl=11, n2 =25, and n3=755; the fine grid
dimensions (Fig. 8) were m1 =6, m2 =9, and m3 = 54.

Case 1.

=1.0 e, =117 h=3.17 mm.

> =

The effective dielectric constant was calculated three times
using three different pairs of points; each pair of points
consisted of the electric field calculations at two locations on
the microstrip, separated (in the z direction) by ten space
steps. At each frequency the difference between the calcula-
tions of the effective dielectric constant using different pairs
of points was at most 0.2. The average of the three is given in
Fig. 10 along with a collection of published results [8], [10].
These published results vary greatly among each other; the
VSSM calculations fall within this range and, in particular,
have an acceptable agreement with the dielectric constant
calculated using the TDFDM.,



478 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39, NO. 3, MARCH 1991

6 T t
0 10 20

Frequency (GHz)

Fig. 11. Comparison of the calculated e, of the microstrip as com-
puted by various authors, with w/h =10, e, =9.7, and & =127 mm.
Parameters are as listed above unless otherwise noted.

1) Schmitt and Sarges (w /h = 0.96)

2) Fujiki et al. (w /h = 0.96)

3) Kowalski and Pregla

O Variable step size time-domain finite-difference method
v Deutsch and Jung (e, = 9.8)

O Hartwig et al. (w / h = 0.96).

All but O are taken from [11], a survey article comparing the various
techniques. O is from the present work.

0 30 60 90 120 150 180 210 240 270 300
Frequency (GHz)

Fig. 12. Comparison of the calculated e, of the microstrip as com-
puted by various authors, with w /h=1.5, A= 0.5 mm, and ¢, =13.0:

1) Edward and Owen

2) Pramanic and Bhartia

3) Zhang, time-domain finite-difference method

4) Variable step size time-domain finite-difference method.

1)-3) are taken from [7]; 4) is the present work.

Case 2:

=1.0 h=127 mm.

> =

The resulting dielectric constant (an average as before) is
shown in Fig. 11, along with results from [11]. The agreement
is even better than in the previous case.

Case 3:

w
€, =13.0

h=0.5 mm.

The average calculated dielectric constant, along with the
TDFDM results and the results from Edward and Owen and
from Pramanic and Bhartia (all curves obtained from [8]) is
given in Fig. 12. The results agree well with the three other
calculations, including the TDFDM.

In summary, the dielectric constant values obtained from
VSSM calculations show a good agreement with the original
TDFDM results and with other independent calculations,
demonstrating that the VSSM is a viable technique for
determining microstrip properties.

IV. CoNcLusION

It has been demonstrated that the addition of the subgrid-
ding algorithm to the TDFDM produces no extra numerical
reflection and yields a technique that is numerically stable.
The results for the computation of the effective dielectric
constant of the microstrip showed close agreement with
those obtained both by the TDFDM and other independent
techniques. This shows that the technique does indeed yield
accurate solutions and thereby the applicability of the
TDFDM is expanded. It can now be applied to a large
number of structures that were difficult (if not impossible,
with the current computer hardware) to treat with the ordi-
nary TDFDM because of memory limitations.

Possible improvements to the present technique that can
be investigated in the future involve testing an even smaller
fine grid step size. This can involve either adding an even
finer grid within the fine grid with the step size reduced by
an additional factor of 3, or simply reducing the fine grid
step size by an additional factor of 3. This subgridding
algorithm can also be implemented in many other time-
domain finite-difference codes, such as Holland’s THREDE
[12], Kunz’s GFDTD [13], Merewether’s FDTD [14], and
Taflove’s FDTD [15].
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